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Quantum walks play a crucial role in quantum algorithms and computational problems. Many-
body quantum walks can reveal and exploit quantum correlations that are unavailable for single-
walker cases. Studying quantum walks under noise and dissipation, particularly in multi-walker
systems, has significant implications. In this context, we use a thermodynamically consistent for-
malism of dissipation modeling, namely the steepest entropy ascent (SEA) formalism. We analyze
two spinless fermionic continuous-time walkers on a 1D graph with tunable Hubbard and extended
Hubbard-like interactions. By contrasting SEA-driven dynamics with unitary evolution, we system-
atically investigate how interaction strengths modulate thermalization and entropy production. Our
findings highlight the relevance of SEA formalism in modeling nonlinear dissipation in many-body
quantum systems and its implications for quantum thermalization.

I. INTRODUCTION

Recent progress in quantum information processing,
quantum algorithms, quantum protocols, and their appli-
cations can be manifested using different quantum walk
models. First introduced by Aharonov et al. [1] in 1993,
and later utilized as a search tool by Shenvi et al. [2] and
Childs and Goldstone [3], the quantum walk algorithm
has come a long way since then. Childs [4] showed that
quantum walks present a universal model of quantum
computation. Quantum walks are involved in the mod-
eling of relativistic dynamics [5] as well as thermaliza-
tion, including understanding eigenvalue thermalization
[6]. Duda et al. [7] studied diffusion, and localization on
random lattices using quantum walks. Quantum walks
can route entanglement on a network [8], and find appli-
cation in quantum magnetometry [9].
Many-body physics can be explored via multi-walker
quantum walks (MWQW). One of the first studies in
MWQW was the two-walker (either entangled or other-
wise) walks on a line [10, 11]. Childs et al. [12] showed
that MWQW is also a universal model of quantum com-
putation. Rohde et al. [13] did a detailed study of the
multi-walker formalism on the graphs and their photonic
implementation. Xue and Sanders [14] showed that shar-
ing a coin between two walkers increases mutual infor-
mation as swapping increases. MWQW is being used
to model flexible teleportation schemes for multi-qubit
systems [15]. Quantum foundation problems, such as the
study of non-locality and local realism models, have been
investigated using multi-walker quantum walks [16]. Re-
cently, quantum walks have been implemented on IBM
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quantum computer [17]. Jiao et al. [18] showed that
MWQW with photons on a two-dimensional lattice is
used to simulate various genuine quantum phenomena.
An MWQW has been used to mimic the effects of grav-
itationally induced entanglement [19]. Recently, [20] has
analyzed collaborative quantum walks with more than
two walkers. Two-walker quantum walks have been used
for the quantum color image encryption protocol [21].
Dissipation in quantum walks can result from experi-
mental noise or environmental interactions, altering sys-
tem behavior. Dissipative studies follow two main ap-
proaches. The first is the widely used Lindbladian for-
malism, which ensures complete positivity and trace
preservation [22, 23]. Here, the system weakly couples
to the environment while the combined system evolves
unitarily. Under the Markovian assumption, the system-
environment state starts as a product state, leading to an
irreversible yet thermodynamically consistent evolution
based on specific environmental models—a ‘bottom-up’
approach [24]. Most dissipative quantum walk studies
use this approach via the Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) master equation [25, 26]. Kendon
and Tregenna [27] first explored decoherence in quantum
walks under this framework (see [28, 29] for reviews).
Fedichkin et al. [30] analyzed decoherence via mixing,
while Candeloro et al. [31] studied continuous-time quan-
tum walks (CTQW) under quadratic Hamiltonian per-
turbations. Garnerone [32] investigated thermodynamic
properties, and Pegoraro et al. [33] recently examined
conditioned losses in two-photon walks.
We propose to adopt a ‘top-down’ approach, starting
with model dynamics in the density operator formalism
to derive a thermodynamically consistent master equa-
tion. This approach derives a general, thermodynami-
cally consistent master equation where the Gibbs state
is the globally stable equilibrium (per the second law of
thermodynamics). This leads to a nonlinear dynamical
equation without exotic effects like signaling [24]. A key
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candidate for this approach is the steepest entropy ascent
(SEA) formalism, proposed by Beretta et al. [34] to unify
thermodynamics and mechanics [35]. SEA evolution for
composite systems was later introduced [36], and Beretta
demonstrated its thermodynamic consistency and appli-
cability to general quantum dissipation [37–40]. He also
proposed a generalized SEA framework similar to other
dissipative models [41], eventually arguing that SEA
could be considered the fourth law of thermodynamics
[42]. Beyond pedagogical advances, SEA has seen grow-
ing applications. It has been used for temperature and
magnetization modeling in low-temperature systems [43]
and for predicting entanglement loss in controlled phase
gates [44]. One of the authors applied SEA to study
dissipation in CTQW and developed an approximate an-
alytical method using fixed Lagrange multipliers (FLM)
[45]. SEA has also been used to model decoherence in
superconducting quantum processors [46], dissipative dy-
namics in two-qubit gates [47], and non-local correlation
loss, with Damian et al. [48] showing strong agreement
between SEA predictions and experiments. Despite its
nonlinearity, SEA evolution does not lead to signaling
[24].
From the discussion of the preceding paragraphs we
conclude that the important problem of dissipation in
MWQW has not been explored through the SEA frame-
work. In this paper, we study the problem of dissipation
in two-walker CTQW under the SEA evolution. One of
the major advantages of using SEA lies in the fact that
one does not need to worry about particular modeling
of the environment — the relaxation dynamics will con-
tinue to drive the system towards the available maximal
entropic state via a path of steepest entropy production.
We study two fermionic particles walking on a ring (1D
lattice with periodic boundaries) and analyze the evo-
lution of the dissipative walk. Additionally, we exam-
ine the effect of SEA on MWQW across different inter-
action regimes (Table I), considering Hubbard and ex-
tended Hubbard-like interactions with varying strengths.
This paper is organized as follows. In Sec. II, we intro-
duce the necessary theoretical background for this work.
We introduce the continuous-time quantum walker for
two-walker in section IIA, and in section II B we do the
same for the steepest entropy ascent formalism. In sec-
tion III, we discuss the various regimes of interaction un-
der consideration and present the results of our analysis.
We discuss the results in section IV and therein present
our concluding remarks.

II. THEORETICAL PRELIMINARIES

A. The two-walker continuous-time quantum walk

The single quantum walker can be modeled on an un-
derlying graph. We begin by considering an undirected
graph G with no loops and multiple edges. G has a vertex
set V with N vertices and an edge set E defined as the

FIG. 1. A schematic of the two-walker model on a ring
graph of N vertices indexed from 0 to N − 1. The two-
walker wave-function is an element of the joint Hilbert space
H = HA ⊗ HB . Initially, walkers A and B are localized in
distinct regions, allowing the composite state to be written
as a product state. As correlations develop during evolution,
the system is described by a composite antisymmetric den-
sity matrix (ρa). The reduced density matrix ρJ represents

the J
th

walker.

set of edges that exist between the vertices. We associate
a degree matrix D, a diagonal matrix with ith entry de-
noting the degree (number of edges incident on a given
vertex) of the ith vertex (see Fig. 1). Using an adjacency
matrix A defined as follows

A : aij =

{
1 if eij ∈ E
0 otherwise

, (1)

we define the Laplacian L on G using the relation: L =
D − A. We can write the following equation of motion
for a continuous-time quantum walker[45],

dρ

dt
= − i

ℏ
[H, ρ] = − i

ℏ
[µL, ρ]. (2)

Using the computational basis, we express ρ =∑
i pi |i⟩⟨i|, where pi is the probability that the walker is

at vi. We notice that the effective Hamiltonian describ-
ing the evolution can be written as H = µL, µ a square
matrix of size N that contains the hopping-probability
and on-site potential information. We can express the
same Hamiltonian in tight-binding form as

L =

N−1∑
i=0

di |i⟩⟨i| −
∑
⟨i,j⟩

(|i⟩⟨j|+ |j⟩⟨i|) ,

⇒ H =

N−1∑
i=0

diµii |i⟩⟨i| −
∑
⟨i,j⟩

µij (|i⟩⟨j|+ |j⟩⟨i|) ,

=

N−1∑
i=0

ϵi |i⟩⟨i| − t
∑
⟨i,j⟩

(|i⟩⟨j|+ |j⟩⟨i|) .

(3)

We have used hopping probability µij to denote the tran-
sition probability per unit time between two vertices vi



3

and vj (with an additional assumption of uniform transi-
tion probability, µij = µ), di = 2 is the degree of vertex
vi and µii = µ for all i for our purposes. Addition-
ally, in our case of the ring graph, on-site potential term
ϵi = di = 2 for all i. For simplicity, the nearest neighbor
hopping term t is considered equal to µ = 1, for all pairs
⟨i, j⟩. The solution to the equation Eq. (2) is given by

ρ(t) ≡ ρt = Utρ
0U†

t , (4)

with Ut = exp(−iH t) (in this paper, we consider ℏ = 1).
We now do the straightforward extension of the above
formalism to include the two-walker quantum walk. We
consider walkers A and B walking on the same graph
G, the walk will be governed by a general Hamiltonian
which includes a non-interacting and an interacting part
in the following fashion.

H = Hfree +Hint, (5)

where Hfree = HA⊗ IB + IA⊗HB , and HJ , IJ act on sub-

system J for J ∈ A,B. The term Hint depends on the
model of choice and will be discussed in Sec. III. We con-
sider two indistinguishable walkers with anti-symmetric
wave-function defined in the computational basis as

|ψij⟩ =
1√
2
(|ij⟩ − |ji⟩) , (6)

and the corresponding density matrix as ρij = |ψij⟩⟨ψij |.
We can also define projectors that will project onto the
anti-symmetric subspace of the tensor-product Hilbert
spaceHA⊗HB . These projectors can be written in terms
of swap operators Sρij = ρji, as

Pa =
1

2
(I − S ) . (7)

Using these projectors, the usual Scrödinger-von Neu-
mann equation of motion can be written as

Pa
dρ

dt
Pa = −i[Ha, ρa], (8)

where, Ha = PaHPa, and ρa = PaρPa. Under this
scheme, the unitary equation of motion of the density
matrix can be written as (analogous to Eq. (2))

dρa
dt

= −i[Ha, ρa]. (9)

This equation provides a guarantee that the system will
be constrained to the relevant antisymmetric subspace
throughout its evolution. The solution can be similarly
written as,

ρta = Utρ
0
aU

†
t , (10)

with Ut = exp(−iHat). The joint probability distribution
(JPD) of the walkers at time t is given by this Pt

a(m,n),

and can be found as (for simultaneous detection at ver-
tices or sites m and n)

Pt
a(m,n) = ⟨mn|AB ρ

t
a |mn⟩AB . (11)

The marginal probability of finding each of the J
th

walker
at time t and at site m can be given by (J denotes the
complementary system to J),

pta(m) = ⟨m|J trJ
(
ρta
)
|m⟩J . (12)

We have used trJ (ρ) to denote partial trace over the

subsystem J .

B. Steepest entropy ascent formalism

1. Single-component equation

We present the theoretical background required for the
steepest entropy ascent (SEA) formalism. However, for
a detailed derivation and motivation for the SEA formal-
ism, we direct the reader to the Refs. [41, 45]. In the SEA
formalism, the local entropy production is maximized in
tandem with various conservation criteria. We begin by
elaborating on the usage of the ‘top-down’ term in the
introduction.
The SEA dynamics describes the relaxation of a system
from far-off equilibrium towards equilibrium. The Gibbs
state is the stable equilibrium state from the canonical
second law of thermodynamics [35]. A general dynamics
that maximizes entropy production to reach such an equi-
librium is essentially nonlinear [49, 50]. This scheme also
stands out as it considers a seldom confronted thermo-
dynamic consistency criterion, the stability of the Gibbs
state. Naturally, SEA becomes a ‘top-down’ approach,
as it does not build up from a Schrödinger equation and
derives the equation of motion (EoM) using the desider-
ata as following. Beretta formulated the original version
of SEA in Refs. [34, 36, 38, 39, 41], and hence we will
call it the Beretta SEA (BSEA) EoM. In Ref. [45], one of
the authors has derived the BSEA EoM (see Appendices
A and B therein). We will begin with the generic feature
of the BSEA EoM, in the Ginzburg-Landau form [51]:

dρ

dt
= −i[H , ρ]− {D, ρ}, (13)

where we have introduced the dissipation operator D in
the anti-commutator of the RHS. In the absence of an ex-
ternal reservoir, the isolated system evolves in the direc-
tion of maximum local entropy production. As a conse-
quence, the state vector evolves non-unitarily by strictly
adhering to the constraints of the motion, while the tra-
jectory moves more and more towards the global stable
equilibrium state of the given context. Eq. (13) is a com-
pactified form of BSEA, the full expression for D is given
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below[41, 45]:

dρ

dt
+ i[H , ρ] =

− 1

τ

∣∣∣∣∣∣∣∣
ρB ln(ρ) 1

2{C1, ρ} 1
2{C2, ρ}

tr
(
ρ
2{C1, B ln(ρ)}

)
tr
(
ρC 2

1

)
tr
(
ρ
2{C1,C2}

)
tr
(
ρ
2{C2, B ln(ρ)}

)
tr
(
ρ
2{C2,C1}

)
tr
(
ρC 2

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣tr

(
ρ
2{C1,C1}

)
tr
(
ρ
2{C1,C2}

)
tr
(
ρ
2{C2,C1}

)
tr
(
ρ
2{C2,C2}

)∣∣∣∣∣∣
.

(14)

In the above equation, τ is known as relaxation time, Ci

is the operator associated with the system conservation
and constraint e.g., for a single particle C1 is I operator,
for probability conservation; and C2 is the Hamiltonian
operator H , for energy conservation. B is an idempotent
operator, projecting ln(ρ) on the kernel of ρ, making it
analytically well defined. B can be formally written as
B = Pker(ρ). We cast Eq. (14) in the following convenient
form,

dρ

dt
= −i[H , ρ]− 1

2τ

[
{B ln(ρ), ρ}+

∑
i

(−1)iβi{Ci, ρ}

]
.

(15)
Here, the parameters, βi, are defined explicitly in Eq.
(14) and, in general, are nonlinear functionals of ρ, which
vary in time during the evolution. In the presence of
reservoir, β2 associated with H can be interpreted as in-
verse temperature and is solely determined by the reser-
voir [48]. In some cases, as discussed in [45], these βi’s
can be considered constant and that consideration re-
duces the nonlinearity present in Eq. (15), especially in
the low τ region. We define the operator D,

D =
1

2τ

[
B ln(ρ) +

∑
i

(−1)iβiCi

]
. (16)

We use D to write equation (15) as Eq. (13). This
completes the short introduction of the single-component
BSEA EoM. However, for our purposes, we need to use
the two-component BSEA EoM.

2. The two-component equation

Before proceeding with the two-component BSEA
EoM, we need to address the subtleties of using a non-
linear evolution to describe many-body dynamics. In
interacting systems, the interaction energy, and in cor-
related systems, the mutual entropy (as defined later),
do not have a clear division between system compo-
nents [36, 39]. Meanwhile, SEA dynamics maximizes
local entropy production. Without a proper framework
to define the local contribution of these quantities, im-
plementing SEA evolution becomes challenging. In this
regard, we use the ‘local-perception’ operators (LPOs)
[24, 36, 38, 39] for the following reasons:

1. Unlike the linear Scrödinger-von Neumann formal-
ism, which retains the same form of EoM for both
composite and single systems, the BSEA EoM, be-
ing nonlinear, needs to respect the structure of the
composite to avoid unphysical interactions [24].

2. The LPOs, constructed via a weighted projection
of the composite operator onto local Hilbert spaces
(Eq. (17)), are no-signaling, as their expectation
values remain unchanged under local unitary oper-
ations in other subsystems [24].

We consider the dynamical equation of composite sys-
tems in the following manner. Consider the Hilbert
space of the N partite composite system of the form
H1 ⊗ H2 ⊗ · · · ⊗ HN . The SEA formalism is built on
the ‘locally’ steepest entropy ascent, maximizing the lo-
cally ‘perceived’ entropy and conserving corresponding
‘perceived’ constraint functionals [24, 36, 39]. As a re-
sult, each of these local subsystems undergoes SEA treat-
ment. The general Hamiltonian has the form H =∑

J HJ ⊗ IJ + V , where V is the interaction term, HJ

the local Hamiltonian of the J
th

subsystem in HJ , and
IJ ∈ HJ =

⊗
K ̸=J HK . The reduced density matrices of

the J
th

component is ρJ = trJ (ρ). The LPO, as origi-
nally introduced in Ref. [36] and recently reintroduced
in the context of no-signaling and quantum information
tasks in Ref. [24] is defined as -

(Ci)
J = trJ ((IJ ⊗ ρJ)Ci) . (17)

We immediately notice that for a two-component sys-
tem, AB, the LPOs defined on subsystems A and B are
unique and express the limitation of the information A
and B can have about the overall operator X via classical
communication. This can be expressed as

Tr
[
ρA(X)Aρ

]
= Tr[(ρA ⊗ ρB)X] = Tr

[
ρB(X)Bρ

]
. (18)

We define the locally perceived entropy operator (LPEO)
as

(S (ρ))A = trB ((I2 ⊗ ρB)S (ρ))

(S (ρ))B = trA ((ρB ⊗ I2)S (ρ))

S (ρ) = −kBB ln(ρ) with B ln(x) =

{
0 for x ≤ 0

ln(x) for x > 0

(19)

We impose another salient feature of the evolution to en-
sure SEA is trace-preserving (TP), the part in the anti-
commutator of RHS in Eq. (13) must be traceless (sim-
ilar to Lindblad evolution). We can extend this to the
case of a many-body SEA equation, and demand that the
local dissipative operators DJ be such that {DJ , ρJ} is
traceless. We can write the many-body BSEA EoM (for
M constituents) as [24, 36–39]

dρ

dt
= −i[H , ρ]−

M∑
J=1

{DJ , ρJ} ⊗ ρJ . (20)
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We note thatDJ operate onHJ , and is nonlinear. Also, if one setsM = 1, we can recover Eq. (13). The expression
for DJ can be written as [24, 36],

{DJ , ρJ} =
1

2τJ

∣∣∣∣∣∣∣∣
ρJ(B ln(ρ))J 1

2{(C1)J , ρJ} 1
2{(C2)J , ρJ}

tr
(
ρJ

2

{
(C1)J , (B ln(ρ))J

})
tr
(
ρJ(C1)

2
J

)
tr
(
ρJ

2 {(C1)J , (C2)J}
)

tr
(
ρJ

2

{
(C2)J , (B ln(ρ))J

})
tr
(
ρJ

2 {(C2)J , (C1)J}
)

tr
(
ρJ(C2)

2
J

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣tr

(
ρJ

2 {(C1)J , (C1)J}
)

tr
(
ρJ

2 {(C1)J , (C2)J}
)

tr
(
ρJ

2 {(C2)J , (C1)J}
)

tr
(
ρJ

2 {(C2)J , (C2)J}
)∣∣∣∣∣∣

(21)

If, we note that the local Lagrange multipliers can be
computed as under

ΩJ =

∣∣∣∣tr(ρJ

2 {(C1)J , (C1)J}
)

tr
(
ρJ

2 {(C1)J , (C2)J}
)

tr
(
ρJ

2 {(C2)J , (C1)J}
)

tr
(
ρJ

2 {(C2)J , (C2)J}
)∣∣∣∣ ,
(22)

and then,

βJ
1 =

1

ΩJ

∣∣∣∣tr(ρJ

2

{
(C1)J , (B ln(ρ))J

})
tr
(
ρJ

2 {(C1)J , (C2)J}
)

tr
(
ρJ

2

{
(C2)J , (B ln(ρ))J

})
tr
(
ρJ

2 {(C2)J , (C2)J}
)∣∣∣∣ ,
(23)

βJ
2 =

1

ΩJ

∣∣∣∣tr(ρJ

2

{
(C1)J , (B ln(ρ))J

})
tr
(
ρJ

2 {(C1)J , (C1)J}
)

tr
(
ρJ

2

{
(C2)J , (B ln(ρ))J

})
tr
(
ρJ

2 {(C2)J , (C1)J}
)∣∣∣∣ .
(24)

Thus we can write the following simplified expression for
the local SEA dissipation operator,

DJ =
1

2τJ

(
(B ln(ρ))J +

∑
i

(−1)iβJ
i (Ci)J

)
. (25)

Taking the partial trace over the Eq. (20) we get the
model equation of dissipation for the subsystem J as [24,
39]

dρJ
dt

= −i[HJ , ρJ ]− trJ ([V , ρ])− {DJ , ρJ}. (26)

Now, as a final note, to account for the particle sym-
metries, we must include the projector just as we did
in Eq. (8). This implies projecting the overall Hilbert
space and its operators to the subspace as required, and
then compute the “new” local operators to implement
the many-body BSEA EoM for the particular symmetry.

dρa
dt

= −i[Ha, ρa]−
M∑
J=1

{DJ(ρa), (ρa)J} ⊗ (ρa)J (27)

III. TWO WALKERS UNDER SEA

Before presenting our results, we elaborate on the
structure of Hint. We start with a more general descrip-

tion, then allow modifications according to our require-
ments. A general form of interaction can be written down
as

H(int, gen) = HA ⊗HB , (28)

which upon expansion, using Hamiltonian as in Eq. (3),
gives rise to the following expression (The indices i, j
belong to the walker A, while k, ℓ belong to the walker B.
The hopping strengths t, s and on-site potentials ϵi, ωk

belong to A and B, respectively.)

H(int, gen) =
∑
i,k

ϵiωk |ik⟩⟨ik| − t
∑

⟨i,j⟩,k

ωk (|ik⟩⟨jk|+ |jk⟩⟨ik|)

− s
∑

i,⟨k,ℓ⟩

ϵi (|ik⟩⟨iℓ|+ |iℓ⟩⟨ik|)

+ ts
∑

⟨i,j⟩,⟨k,ℓ⟩

(|ik⟩⟨jℓ|+ |iℓ⟩⟨jk|+ h.c.) .

(29)

We will also expand the term Hfree as given below

Hfree = HA ⊗ IB + IA ⊗HB ,

=
∑
i,k

(ϵi + ωk) |ik⟩⟨ik| − t
∑

⟨i,j⟩,k

(|ik⟩⟨jk|+ |jk⟩⟨ik|)

− s
∑

i,⟨k,ℓ⟩

(|ik⟩⟨iℓ|+ |iℓ⟩⟨ik|) .

(30)

Combining Eqs. (29) and (30), we get the total Hamil-

Case α1 α2 α3 α4

Full (FI) (All equal) ̸= 0 ̸= 0 ̸= 0 ̸= 0

Hubbard (HI) ̸= 0 = 0 = 0 = 0

Correlated Hopping
Interaction (CHI)

̸= 0 = 0 = 0 ̸= 0

Full interaction with
fixed hopping (FIFH)

̸= 0 ̸= 0 and
= α3

̸= 0 and
= α2

̸= 0

TABLE I. Major interaction regimes and corresponding con-
ditions on αi’s in Eq. (31) for the two walkers.
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FIG. 2. Joint probability distribution (JPD) of two-walker
evolution on a ring with 11 nodes (indexed from zero). The
walkers evolve without interaction (αi = 0 ∀ i). Panels (a)
and (b) show the initial JPD, while panels (c) and (d) depict
the JPD at t/τ = 30. SEA evolution is shown in (a) and (c),
and unitary evolution in (b) and (d). Color bars next to each
panel indicate the corresponding probability values.

tonian as:

Htotal =
∑
i,k

(ϵi + ωk + α1ϵiωk) |ik⟩⟨ik|

− t
∑

⟨i,j⟩,k

(1 + α2ωk) (|ik⟩⟨jk|+ |jk⟩⟨ik|)

− s
∑

i,⟨k,ℓ⟩

(1 + α3ϵi) (|ik⟩⟨iℓ|+ |iℓ⟩⟨ik|)

+ α4ts
∑

⟨i,j⟩,⟨k,ℓ⟩

(|ik⟩⟨jℓ|+ |iℓ⟩⟨jk|+ h.c.) .

(31)

Where we introduce these scalars αi’s to tune each com-
ponent of the above expression to include various levels
of interaction.
We proceed by computing the projection of this Hamil-
tonian of Eq. (31) to the anti-symmetric subspace as
we are interested in the fermionic type walkers. We get
(using Pa as defined in Eq. (7) ),

Htotal, a = PaHtotalPa (32)

Based on the different settings for the parameters (αi’s),
we identify four major cases for our study. We compare
Eq. (29) and Eq. (30) and note that the terms with
α2 and α3 are already present in Hfree, which is there to
modify the weight of conditional hopping terms in the
Hamiltonian. On the other hand, the term associated
with α1 modifies the on-site contribution, so the real ‘in-
teraction’ term is due to the α4. Based on these obser-
vations, we find four regimes of interaction. First case is
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FIG. 3. Joint probability distribution (JPD) of two-walker
evolution (see Table I) on a ring with 11 nodes (indexed
from zero). The walkers experience strong, full interaction
( αi = 10 ∀ i). Panels (a) and (b) show the initial JPD, while
panels (c) and (d) depict the JPD at t/τ = 30. SEA evolu-
tion is shown in (a) and (c), and unitary evolution in (b) and
(d). Color bars next to each panel indicate the corresponding
probability values.

where all the αi’s are nonzero and equal, we call it ‘full
interaction’(FI). In the case where only α1 is non-zero, we
call it the ‘Hubbard’(HI) regime (because of the spinless
antisymmetric consideration, there are no true Hubbard
interactions). For only non-zero values of α1 and α4,
we get a ‘correlated hopping interaction’(CHI) regime.
And finally we consider fixed conditional hopping terms
(α2 = α3) with α1 and α4 varying equally, we call this
‘full interaction with fixed hopping’(FIFH). The chosen
values are within three orders of magnitudes, so weak
interaction implies the value 0.1, medium 1, and strong
at 10. t and s are considered to be one. We summarize
this classification in the table I. We will now study the
dynamics of the two walkers in each case. We study the
evolution in unitless time t/τ , where τ is the average re-
laxation time defined as τ = (τA + τB)/2. We first begin
by understanding the unitary walk features in the case
of various degrees of interaction. Our initial states are
perturbed entangled states. We begin by having a ‘sin-
glet’ configuration (for the initial position of each walker
being at either ith or jth site of the ring) of the form

|ψ(i, j)⟩ = 1√
2
(|i⟩A |j⟩B − |j⟩A |i⟩B) ,

which is then perturbed by an amount ε ∈ [0, 1) by
a white noise (uniformly distributed over all the basis
states spanning the antisymmetric subspace of Ha =
HA ∧HB) to generate mixed state as under:

ρ0 = ε |ψ(i, j)⟩⟨ψ(i, j)|+ (1− ε)Ia. (33)
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FIG. 4. Marginal probability of walker A on a ring graph with 11 sites, evolving under a Hamiltonian with no interaction.
Panels (a)–(c) depict unitary evolution, while panels (d)–(f) show SEA evolution. Panels (a) and (e) compare the initial
evolution of the marginal probability distribution under unitary and SEA dynamics, respectively. Panels (b) and (f) show the
late-time evolution for the same cases. The large color bars on the left of each panel indicate probability values, while the
smaller ones on the left of panels (b) and (f) correspond to zoomed-in probability scales. The x-axis represents time (t/τ), and
the y-axis denotes the site number. Each of the smaller panels ((a), (b)) and ((e), (f)) are zoomed portions of panels (c) and
(d), respectively, with the zoomed-in sections marked by rectangles.

We use ε = 0.95 to produce slight perturbation in the
initial state. This is by no means the only way to cre-
ate mixed states; there exist other approaches also [48].
However, studying the effects of such methods lies be-
yond the scope of this work.
A reliable measure of two-walker evolution can be ob-
tained by tracking the evolution of the joint probability
distribution (JPD). We compute JPD via the Eq. (11).
In Fig. 2, we show how the JPD of the two-walker evolves
without interaction. We present two time slices to show
the difference in evolution; one is at t/τ = 0 (panels (a)
and (b)), and the other is at t/τ = 30 (panels (c) and

(d)) in Fig. 2. The JPD evolves from two sharp peaks
at (5,6) and (6,5) at t/τ = 0 and spreads more under the
SEA dissipation, in contrast to continuously oscillating
unitary evolution. The underlying unitary feature is not
totally lost during the SEA evolution (see the comparison
between panels (c) and (d) in Fig. 2), just that it is more
smeared. In Fig. 3, where we are in the full interaction
range (Table. I) with αi = 10 for all is. We see that the
SEA evolution (panel (c) of Fig. 3) has lesser probability
peaks when compared to the unitary one (panel (d) of
Fig. 3). This can be seen by counting the number of
magenta blocks in the respective panels.
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FIG. 5. Marginal probability of walker A on a ring graph with 11 sites, evolving under the Full Interaction Hamiltonian with
αi = 10 for all is (see Table I). Panels (a)–(c) correspond to unitary evolution, while panels (d)–(f) depict SEA evolution. Panels
(a) and (e) show the initial evolution of the marginal probability distribution for unitary and SEA dynamics, respectively, while
panels (b) and (f) illustrate the late-time evolution. The large color bars on the left of each panel represent probability values,
and the smaller ones on the left of panels (b) and (f) show corresponding zoomed-in probability scales. The x-axis represents
time (t/τ), and the y-axis denotes the site number. Each of the smaller panels ((a), (b)) and ((e), (f)) are zoomed portions of
panels (c) and (d), respectively, with the zoomed-in sections marked by rectangles.

This evolution of JPD is reflected in the time evolu-
tion of the marginal probability of the walkers. We show
the marginal probability of the walkers in Fig. 4. As
expected, the early time marginal evolution under uni-
tary (panel (a) of Fig. 4) shows similar oscillations to
the marginal evolution under SEA (panel (e) of Fig. 4).
The late time marginal evolutions of unitary (panel (b)
of Fig. 4) and SEA (panel (f) of Fig. 4) don’t agree with
each other, the unitary spikes are sharper in comparison
(see the associated color bars for the difference in val-
ues). The interference-like patterns are also less in the
SEA case. The smearing of peaks feature as seen in the

JPD of Fig. 2 is also reflected in the marginals as seen
in panels (c) and (d) of Fig. 4. The panels (d) are more
smeared than the panels (c) in Fig. 4. In this case, we
see in comparison to no interaction case (Fig. 4), under
FI (Fig. 5), the marginal probability spreads faster. We
observe this by noting how early the initial probability
spike travels to the far end of the lattice. This is because
the walkers are repulsively interacting with each other,
and this interaction is causing the walkers to spread. We
can also see how, in both cases, the marginal distribu-
tion is always peaked around the center (where the walk
originated from) no matter how faint. This suggests that
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FIG. 6. Mean squared displacement (σMSD) computed from
the two-walker JPD using Eq. (34). Bold lines with markers
represent the moving average, while transparent lines show
the MSD evolution. (a) corresponds to the FI regime, and (b)
to the HI regime. The numbers following SEA and Unitary in
the legend indicate the values of αi’s, representing interaction
strength. The insets show the early-time evolution of MSD.

although the JPD shows rapid spread to the boundary,
the marginal retains a dull peak at the origin of the walk.

x10-1
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0.8

0.6

0.4
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0.0
0 2 4 6 8 10
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x10-1

FIG. 7. Evolution of the moving average of Loschmidt echo
over time (short timescale). In the legend, ‘0’ denotes no
interaction, while ‘10’ indicates αi = 10 in Eq. (31). This
corresponds to the full interaction case (Table I). The inset
shows the longer-time evolution.

This is not only the case with FI, but also in the other
cases as considered in the Table I. This is mostly true for
the unitary case. In the case of SEA evolution, the prob-
ability of finding the walkers at the origin is less than the
corresponding unitary scenarios, as it is more spread out
because of the dissipation.
Apart from various measures of probabilistic evolutions
(e.g., JPD, marginals), we can characterize the walk by
studying the mean square displacement (MSD) of the
walks. This tells us the walkers’ mean spread in space
from their initial position. We can compute the MSD via
the following equation (m,n are the site numbers of the
walkers):

σMSD =
1

N

N∑
m,n

(m− n)2Pt
a(m,n). (34)

If we consider the full interaction i.e., FI regime, we can
see in Fig. 6a that the MSD under unitary evolution
fluctuates less with increasing interaction strength and
remains almost constant at all times of the evolution.
On the other hand, the SEA-induced evolution becomes
closer to unitary evolution as the interaction strength
increases. Also, at FI, SEA MSD is higher than HI Fig.
6.
Besides MSD, we can also compute the Loschmidt echo
(LE) of the walk, which measures the overlap between
the initial (ρ0) and time-evolved (ρt) density matrices,
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FIG. 8. Evolution of the moving average of Loschmidt echo
over time (short timescale). In the legend, ‘0’ denotes no
interaction, while ‘10’ indicates α1 = 10 in Eq. (31). This
corresponds to the Hubbard interaction case (Table I). The
inset shows the longer-time evolution.

given by

LE = tr
(
ρ0ρt

)
. (35)

LE , tracks correlations between different times in the
evolution. An alternative approach would be to compute
LE using the trace of ρ−tρt, but in this work, we adopt
the definition in Eq. (35). For pure states, LE = 1. If
it remains at 1 (for pure initial states) or stabilizes at a
value < 1 (for mixed states), the evolution is reversible.
A gradual decrease in LE signals increasing irreversibil-
ity. Consider the expression,

LE = tr
(
ρ0ρt

)
= tr

(
ρ0Utρ

0U†
t

)
. (36)

We used Eq. (2) in the second equality. Under unitary
evolution with a pure initial state ρ0, we have LE = 1.
However, in this work, we start with a mixed state, and
since unitary evolution preserves purity, LE remains con-
stant but < 1. If integrability is broken by adding inter-
action terms, LE may decrease over time [52, 53]. Let us
look at Fig. 7. As time increases, LE decreases for SEA
evolution. It decreases faster in case of no interaction
(inset of Fig. 7), and it decreases slower in case of full
interaction. We also notice that LE for unitary changes
much more slowly and is usually greater than the SEA
values. We also note that in the presence of interaction,
the LE for SEA is closer to that of the unitary value. If
we consider the HI regime, we know that the non-SEA
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FIG. 9. Evolution of entropy in the two-walker system under
the FI regime. The values of αi are indicated in the legend
next to the SEA and Unitary labels. The inset shows the
entropy evolution of subsystem A, where the original entropy
values are plotted with higher transparency, while the moving
average is highlighted in bold.

evolution is integrable, which can be seen from the LE

plot, as it remains unchanged upon varying interaction
strength. We plot this in Fig. 8. We see that the LE

varies differently in consideration to FI picture (Fig. 7).
Also, the absence of extra interaction terms makes the
unitary LE much closer to the SEA LE in the HI regime
at initial times. However, as time progresses, SEA evolu-
tion becomes more dissipated with interaction than even
the free-from-interaction case in HI regime (see inset of
Fig. 8).
So far, we have seen how the characteristic measures of
the walk differ under the influence of unitary and SEA
dynamics. Now, we focus our attention on entropy. The
principal tenet of SEA being the generation of entropy,
we expect to see entropy gain and the corresponding de-
crease in mutual information (M(ρ)) defined as (kB = 1)

M(ρ) = kB tr(ρ ln(ρ))− kB

M∑
J=1

tr(ρJ ln(ρJ)). (37)

The decrease in M(ρ) is a measure of the loss of corre-
lation between the walkers. Especially under SEA evo-
lution, since no extra correlation is being created, this
should be the case. We can see this in Fig. 9, where we
plot the time evolution of the entropy of the two-walker
system under both unitary and SEA in the FI regime.
As interaction strength increases, the unitary evolution
slightly departs from integrability, as seen from the de-
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FIG. 10. Evolution of entropy in the two-walker system
under the FIFH regime. The values of α1 and α4 are indi-
cated in the legend next to the SEA and Unitary labels, with
α2 = α3 = 0.1 fixed. The inset shows the entropy evolution
of subsystem A, where the original entropy values are plotted
with higher transparency, and the moving average is high-
lighted in bold.

viation of otherwise constant entropy in Fig. 9. What
happens in other interaction regimes? For instance, in
the FIFH regime, where the weights of correlated hop-
ping and on-site potentials are tuned relative to the hop-
ping terms—a variation of the FI regime—we observe in
Fig. 10 that entropy growth is influenced by interaction
strength. In unitary evolution, entropy increases as in-
teraction terms break integrability, leading to deviations
from integrable dynamics. However, this is not the case
for SEA. Without interaction, SEA exhibits faster en-
tropy production, but as interaction strength increases,
entropy production slows down, delaying the onset of
thermalization.
We can infer when the system reaches thermalization

by examining the evolution of M(ρ). Once it saturates,
no further correlations are lost, signaling the onset of
thermalization. Fig. 11 reveals that even a small inter-
action induces significant correlation buildup. As inter-
action strength increases, M(ρ) saturates later, particu-
larly in Fig. 11a, where all αi’s have equal weight. How-
ever, when the weight ratio is skewed, correlation loss
becomes extensive—surpassing even the no-interaction
case, as seen in Fig. 11b. Notably, while M(ρ) has not
yet saturated within the timescale considered, its even-
tual saturation value appears significantly lower in the
FIFH case than in FI. This suggests a direct dependence
of M(ρ)’s saturation value on the relative strengths of
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FIG. 11. Mutual information (M(ρ)) computed using Eq.
(37). Bold lines represent the moving average, while trans-
parent lines show the evolution of M(ρ). (a) corresponds to
the FI interaction regime, and (b) to the FIFH regime. In
(a), the numbers following SEA and Unitary in the legend
indicate the values of αi’s representing interaction strength.
In (b), they denote α1 = α4, with α2 = α3 = 0.1.

different interaction terms.
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IV. DISCUSSION AND CONCLUSION

In this work, we theoretically explored the evolution
of two walkers under dissipative steepest entropy as-
cent (SEA) dynamics and compared the results with
bare unitary evolution. By examining various interac-
tion regimes, we analyzed key characteristics of the walk,
including the joint probability distribution (JPD), mean
squared displacement (σMSD), and the Loschmidt echo
(LE). We also investigated entropy changes under uni-
tary and SEA evolutions and examined mutual informa-
tion (M(ρ)) to gain insight into the system’s thermaliza-
tion.
We began by introducing the Beretta steepest entropy as-
cent equation of motion (BSEA EoM) [42] for two compo-
nents of a composite system. However, our work does not
involve an interacting reservoir for thermalization. In-
stead, we quench the system from a pure to a mixed state
by introducing noise (see Eq. (33)),without detailing the
quenching process. Post-quench, we assume the system
evolves in isolation. Unlike the Lindblad master equa-
tion, our approach does not involve continuous interac-
tion with an external environment, eliminating the need
for the Markovian approximation. In the SEA frame-
work, the system is initialized in a mixed state, meaning
it is already out of equilibrium. As a result, it under-
goes further dissipation, following the SEA principle of
maximum local entropy generation while respecting local
conservation laws (e.g., probability, energy).
Through the evolution of JPD and the corresponding
marginal probability distribution, we demonstrate that
SEA evolution results in a greater probability spread
across the lattice. While interaction strengths and
regimes influence this spread, the overall trend remains
consistent. The extent of probability distribution spread-
ing depends on the interaction regime, as shown in Fig.
3. We examine the marginal probability distribution at
both early and late times, as depicted in Figs. 4 and
5. In SEA evolution, we observe smearing in late-time
marginals, indicating increased mixing. This probability
spread follows the same patterns observed in JPD evolu-
tion.
To better understand the nature of the walk, we exam-
ine the evolution of σMSD, which quantifies the overall
spread of the walkers and the system’s behavior. Under
unitary evolution, σMSD remains nearly constant across
all regimes, with minor fluctuations. In contrast, SEA
evolution exhibits a significant spread, consistent with
JPD and marginal results, and is influenced by inter-
action types. For instance, when the on-site potential
dominates, SEA and unitary spreads converge at higher
α1 values (Fig. 6b). Increasing the weights of on-site
and correlated hopping terms α1, α4 accelerates walker
spread in the CHI regime. The full interaction regime
exhibits a high MSD (Fig. 6a), which can be further ad-
justed in the FIFH regime, where on-site and correlated
hopping terms dominate. Across all interaction regimes,

SEA spread σMSD increases in the order: FIFH < FI <
CHI < HI.
Regarding the Loschmidt echo, we see that the SEA evo-
lution leads to a significant loss of coherence, which keeps
increasing with time. This starkly contrasts with the uni-
tary evolution, where coherence is preserved for weaker
interactions. As more interaction terms are introduced,
we see a steady decrease in LE of both evolutions (see
Fig. 7 for FI and Fig. 8 for the HI regimes). Numeri-
cal results show that in different regimes, LE under SEA
compared to bare unitary decreases in the order: HI >
CHI > FIFH > FI (largest to smallest deviation at late
times). This suggests that as interaction terms increase,
making unitary evolution more non-integrable, SEA LE

approaches unitary LE over time. The ordering of σMSD

and LE confirms that SEA evolution is more sensitive to
interaction terms than unitary evolution.
Furthermore, our analysis of entropy and mutual infor-
mation M(ρ) supports the conclusions above. The en-
tropy plots clearly illustrate how the onset of entropy
saturation (maximum achievable entropy) depends on in-
teraction strength. Within the time scales and interac-
tion regimes considered, the free SEA entropy reaches its
maximum. This trend is also evident in the entropy of the
subsystem, as shown in the insets of Figs. 9 and 10. In-
terestingly, we confirm that subsystem entropy not only
decreases with an increasing α4/α2 ratio but also satu-
rates later, indicating delayed thermalization. A similar
analysis of M(ρ) provides further insight into the ther-
malization process. The observed decrease in subsystem
entropy (and overall entropy in Fig. 10) aligns with the
declining trend of mutual information. Notably, mutual
information does not reach saturation within the time
scale considered, suggesting that longer time-scale stud-
ies are needed to fully understand the thermalization pro-
cess.
In this work, we aim to extend the SEA formalism to
discuss the evolution of multi-walker quantum systems.
In performing so, we investigated the varied interaction
regimes and their effects on the characteristic measures
of the walk. We have also studied how the entropy sat-
uration is set and how the introduction of the interac-
tion delays the same onset. This study motivates us
to continue our research in doing a detailed analysis on
the various time of thermalization for various interaction
strengths under SEA, and how different those thermal-
ization times are from the unitary case. We will also
be interested in knowing if the scaling of thermalization
times with system sizes is the same for both unitary and
SEA evolutions. And that will lead us to understand if
there exist universal scaling laws in the SEA evolution
thus considered.
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